Phys	sics	201
J .		

Exam 3 – Electrodynamics

April 5, 2007

This is a closed book examination. There is extra scratch paper available. Please explain your answers. Your explanation is worth 3/4 of the points on multiple-choice questions.

- 1) [4 PTS] What is the voltage at t = 0.3 s for a sinusoidal voltage source with $V_{rms} = 4.0 \text{ V}$ and $f = \frac{1}{4}$ Hz? Note: V(t=0s) = 0 V. Write out the equation.
 - a) $0.30 \pm .02 \text{ V}$
 - b) $0.42 \pm .02 \text{ V}$
 - c) 1.81 ± .02 V
 - d) 2.57 ± .02 V
 - e) 5.27 ± .02 V
- 1/(t) = 4/2 SIN (2TI + t)
 - set t= 0.3 sec
- 2) [4 PTS] A positively charged object is placed in the center of a room with a uniform magnetic field. If the magnetic field is pointing east the object will
 - a) move east.
 - b) move west.
 - c) move north.
 - d) move south.
 - e) not move.
- 3) [4 PTS] A 1.5 V battery is connected to a transformer on a side with 1000 windings. The other side has only 10 windings so the output voltage is
 - a) 150 V
 - b) 15 V
 - c)) 0 V
 - 面 0.15 V
 - e) 0.015 V

- Ve = Vs is true for Ac systems -
- 4) [4 PTS] A wire bent into a "C" shape moves at a constant speed perpendicular to (and away from) a long straight current-carrying wire.
 - a) The induced current in the loop will progress clockwise.
 - b) The induced current in the loop will progress counterclockwise.
 - c)) There will be no induced current.
 - d) The induced current decrease as the loop moves away
 - e) None of the above

Ring is not complete - hence no circuit and

- 5) [4 PTS] When the effective (rms) voltage and current in an ac circuit are in-phase, we know
 - (a) the total reactance is zero
 - the capacitive reactance is zero
 - c) the inductive reactance is zero
 - d) the resistance is zero
 - e) the impedance is zero
 - f) both (b) and (d)

Z= (R2+ (x2-4c7)12

V=ZI and Z hous no phase

Z=R -> when X_= X_= O So V=IR "MSONANCE" 1

- a) double its reactance
- b) increase its reactance by a factor of four
- c) leave its reactance unchanged
- d) halve its reactance
- e) decrease its reactance by a factor of four

$$X_{L} = \omega L$$

$$where V(t) = V_{0} \sin(\omega t)$$

$$X'_{L} = 2\omega L$$

$$X'_{L} = 2\omega L = 2X_{L}$$

- a) increases E_i = ½E_r
- b) increases $E_i = \frac{1}{2}E_r$
- does not change.
- d) decreases $E_i = 2E_f$
- e) decreases $E_i = 4E_f$

$$E_{i} = \frac{1}{2} L I_{i}^{2} \qquad f_{NOM} \qquad P_{2} VI \qquad V = L \frac{dI}{dt} \qquad f_{OI} \frac{dL}{dt}$$

$$I_{f} = 2I_{i} \qquad P_{2} \frac{dE}{dt} = L \frac{dI}{dt} I = L \frac{1}{2} \frac{dI}{dt} I^{2}$$

$$E_{f} = \frac{1}{2} L (2I_{i})^{2} = \frac{1}{2} L 4I_{i}^{2} \qquad dE_{i} \qquad dE_{i} \qquad dE_{i} \qquad dE_{i}$$

$$E_{f} = 4 \frac{1}{2} L I_{i}^{2} = 4E_{i} \qquad dE_{i} \qquad dE_{i}$$

- a) The two wires are attracted F_C = ¼F_B
- b) The two wires are attracted $F_C = \frac{1}{2}F_B$
- The two wires are attracted $F_C = F_B$
- d) The two wires are repelled $F_C = F_B$
- e) The two wires are repelled $F_C = 2F_B$
- f) The two wires are repelled $F_C = 4F_B$

- [10 PT] A square loop of wire is placed in a uniform magnetic field, B=1.5 T. The loop has sides that are 2 cm and is rotated at 2 Hz perpendicular to the magnetic field. Two leads connect to the loop.
 - a) What is the maximum magnetic flux in the loop?
 - b) Graph the voltage generated across the leads as a function of time.
 - List (at least) two ways you could increase the voltage across the leads.

Useful mathematical relationships:

$$\sin^2(\theta) + \cos^2(\theta) = 1$$
 and $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$
 $\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)$

$$\int_{b}^{c} \frac{a}{x} = a \ln x \Big|_{b}^{c} = a \Big[\ln c - \ln b \Big] = a \ln \Big(\frac{c}{b} \Big)$$

В

(b)
$$V = -\frac{d}{dt} \int_{0.5}^{\infty} e^{-\frac{d}{dt}} dt = -\frac{d}{dt} \int_{0.5}^{\infty} e^{-\frac{d}{dt}} dt = -\frac{d}{dt} \int_{0.5}^{\infty} e^{-\frac{d}{dt}} dt = -\frac{d}{dt} \int_{0.5}^{\infty} e^{-\frac{d}{dt}} e^{-\frac{d}{dt}} dt = -\frac{d}{dt} \int_{0.5}^{\infty} e^{-\frac{d}{dt}} e^{-\frac{d}{dt}} dt = -\frac{d}{dt} \int_{0.5}^{\infty} e^{-\frac{d}{dt}} e^{-\frac{d}{dt}} e^{-\frac{d}{dt}} dt = -\frac{d}{dt} \int_{0.5}^{\infty} e^{-\frac{d}{dt}} e^{-$$

Anpere's Law

Inside wice

Outside Wire

